
__ USAISEC
US Army Information Systems Engineering Command
Fort Huachuca, AZ 85613-5300

U.S. ARMY INSTITUTE FOR RESEARCH
IN MANAGEMENT INFORMATION,

COMMUNICATIONS, AND COMPUTER SCIENCES
(AIRMICS)

AD-A236 544

Specification and Analysis of
Parallel Machine Architecture

(ASQB-GC-90-011)

17 March 1990

115 O'Keefe Bldg
Georgia Institute of Technology
Atlanta, GA 30332-0800

91-01900,II il// 'tI II , I

This research was sponsored by the Army Institute for Research in Management Informa-
tion, Communications, and Computer Science (AIRMICS), the RDTE organization of the
U.S. Army Information Systems Engineering Command (USAISEC). The objective of this
research was to develop an environment in which a software application, target hardware
architecture, and resource allocation strategy can be defined, simulated and evaluated.
The motivation for this research was to provide ISC, particularly ISSC, methods for test-
ing the performance of a given application or set of applications on a set of candidate
host computers. The tools designed under this project can be used to evaluate the per-
formance of large Ada programs running on POSIX compliant operating systems, as well
as less conventional computer architectures. The first year results reported herein include
a survey of existing methods/tools and the design of software and parallel architecture
representation language. Based on the survey, the Berkeley Requirements Statement Lan-
guage (BRSL) was extended making it suitable for the high level specification and analy-
sis for both software and hardware of parallel machine architecture. This research report
is not to be construed as an official Army position, unless so designated by other author-
ized documents. Material included herein is approved for public release, distribution un-
limited. Not protected by copyright laws.

THIS REPORT HAS BEEN REVIEWED AND IS APPROVED

W. Gowens John R. Mitchell
vision Chief Director
SD AIRMICS

SECURITY CLASSIFICATION OF THIS PAGE
Form Approved

R T UAPOMB No. 0704-0188REPORT DOCUMENTATION PAGE Exp. Date: Jun 30, 1986
Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UIWSTFIEDNONE
2a. SECURITY CLASSIFICAION AUTHORITY 3. DISTRIBUTION/AVAIUBILTY OF REPORT

N/A
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE N/A

N/A ,,,_,,,
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

N/A
Ga. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

AIRMICS (if applicable)I ASoB-O.C N/A
So. ADDRESS (City, State. and Zip Code) 7b. ADDRESS (City, State, and ZIP Code)

115 O'Keefe Bldg.
Georgia Institute of Technology
Atlanta, GA 30332-0800 N/A

8b. NAME OF FUNDING/SPONSORING f8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

AIRMICS ASQB-C NA

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
115 O'Keefe Bldg. PROGRAM PROJECT I TASK jWORK UNIT
Georgia Institute of Technology ELEMENT NO.1 NO. NO. ACCESSION NO.
Atlanta. GA 30332-0800 DY10-01-01 01 ,

11. TITLE (Include Security Classification)

Specification and Analysis of Parallel Machine Architecture

12. PERSONAL AUTHOR(S)

C. V. Ramamoorthy

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT iYear, Month, Dayl 15. PAGE COUNT

Research I FROM_....LLi.. To 3/90 I 90,03,17 20
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse If necessary and Identify by block number)-

FIELD GROUP SUBGROUP Parallel Architecture Software Specification
Parallel Machines Hardware Specification
Specification Languages Berkeley Requirements Statement Language (BR'IRP, n,,rt , Allfntptinn . trn,oipg

19. ABSTRACT (Continue on reverse I necessary and Identify by block number)

The objective of this research was to develop an environment in which a software application, target
hardware architecture, and resource allocation strategy can be defined, simulated and evaluated.
The motivation for this research was to provide ISC, particularly ISSC, methods for testing the per-
formance of a given application or set of applications on a set of candidate host computers. The
tools designed under this project can be used to evaluate the performance of large Ada programs
running on POSIX compliant operating systems, as well as less conventional computer architectures.
The first year results reported herein include a survey of existing methods/tools and the design of
software and parallel architecture representation language. Based on the survey, the Berkeley Re-
quirements Statement Language (BRSL) was extended making it suitable for the high level specifi-
cation and analysis for both software and hardware of parallel machine architecture.

20. DISTRIBUTIONNIAVAILIBILTY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

[UNCLASSIFIED/UNUMITED[3 SAME AS RPT. [] DTIC USERS Unclassified
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE(include Area Code 22c. OFFICE SYMBOL

LTC Joseph M. Hanrany (404) 894-3136 ASOB-GC

DD FORM 1473, 64 MAR 83 APR edition may be used until exhausted.
Al other editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

FINAL REPORT

C.V. Ramamoorthy

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California
Berkeley, CA 94720

(Term: April 1989 - March 1990)

(Contract No. DAKF11-89-C-0016)

Summary of the report

The main tasks for the first year of research (April 1989 - March 1990) consist of

the survey of existing methods/tools and the design of software and parallel architecture

representation language. Based on the survey, we extended our BRSL system so that it is

suitable for the high level specification and analysis for both software and hardware of

parallel machine architecture. Our approach uses one common specification language

incorporating both of software and hardware aspects in order to make the specification

and analysis consistent and easy.

During this fiscal year, we developed BRSL to be used as specification language.

Hardware description languages were fully surveyed to extend our BRSL to accommo-

date the specification of hardware aspects of parallel machines including task allocation

strategy. The prototype has been developed and is now being extended to be fully

expressible all the aspects of software and hardware of parallel systems. At this stage,

we are concentrating on the high level hardware description which can be used to

describe both types of shared memory and message passing parallel machines. More

detailed language description capability that discriminate the tightly coupled vs. loosely

coupled system is also being considered. For this purpose, basic research for the

classification of various parallel architectures is done.

In this report, we describe BRSL specification language, Distributed simulation

which can be used during simulation to speed up the simulation process, and Network

Event Manager which is to be used for monitoring the simulation process and for

analysis of the simulation.

Report on Specification and Analysis of Parallel Machine Architeture

C.V. Ramamoorthy

Computer Science Division

Dept. of Electrical Engineering and Computer Science

University of California, Berkeley

L Introduction

Recent years we have seen the introduction of many parallel machines in the

research field and the commercial market. This was made possible by the remarkable

advancement in the device technology, and was also needed to provide the enough pro-

cessing power required by the application programs which are becoming larger and more

complex. But we also have seen the proliferation of many different architectures without

a single dominant architecture. Unfortunately each architecture has some advantages and

some disadvantages and our experience with these parallel machines is very limited.

This situation puzzles not only a designer when he has to make decisions on how to

design a parallel machine but also a customer or user when he has to decide which paral-

lel machine to purchase or wants to know how to use it more efficiently. Therefore we

need a method to evaluate and compare many different parallel architectures.

One approach is to analyze and operate existing parallel machines and compare the

data collected. But this approach is not practical to most users with limited resources and

time, let alone a designer who does not even have any real machines yet. More realistic

and economic way will be to describe the parallel architectures under consideration with

a language or other description tools, analyze and simulate them to gather information on

their static and dynamic characteristics. For the conventional machines which have a

single processor mostly, it suffices to describe the architecture, analyze it, and simulate

some synthetic benchmark programs on it. But when we execute the same task on paral-

lel machines which have many processors and many memory modules, we face new

problems which did not exist in a single processor machine. One problem is the resource

allocation, deciding which processor gets which process and which memory module

stores which data fragment. Depending upon this resource allocation policy, the parallel

machines exhibit a wide range of characteristics. Another problem stems from the

-2-

complexity of the application programs running on the parallel machines. Those pro-

grams consist of many processes and the interactions among these processes through
communication are complicated. Therefore although it may be an immediate goal to

specify, analyze, and simulate the parallel architectures, the ultimate goal should be a

design of an integrated tool with which we can specify, analyze, and simulate parallel

architectrs, resource allocation policies, and application programs altogether. Our

environment is described in Figure 1.

Architecture Software Time

Fault-
BRSL Description Description Tolerance

Allocation Distributed

Description Planning

r Distributed

Metri DSG Simulation

Trest
Simulator

Event

Manager

Annalysis

Figure 1. Specification, analysis and simulation environment

-3-

With this integrated environment we first specfy and analyze hardware and software

sepately, then evaluate the whole system with the resource allocation strategy specified.

Distributed simulation can be used to speed up simulation process during simulation. In

our environment, we design the use of Network Event Manager to monitor the simulation

process and to analyze the simulation result.

There ar already many hardware description languages and analysis tools available

but most of them fall in one of following two categories. One category is languages and

tools for integrated circuit synthesis and its level of description can be instuctonal level,

register transfer level, switching circuit level, ciruit level. Some examples are Instruc-

tion Set Processor (ISP) [BAR77], Computer Design Language (CDL) [BAR75], A

Hardware Programming Language (AHPL) [-IL75], ESIM, VIESIM, SPICE, PISCES.

But none of them are suitable for our purpose because the level of detail is too low, hence

it is very difficult and takes too much effort to specify and analyze parallel architectures

with them. The other category comprises the languages and tools for the description of

distributed environments [PON86]. Here each host is represented by an absract single

processor machine. So many important features of parallel machines cannot be

explained.

Realizing inappropriateness of existing languages and tools, we have developed

new languages and tools suitable for our purpose by extending Berkeley Requirement

Statement Language (BRSL) to specify and analyze parallel architectures. The level of
specificaion detail is very flexible, and there exist analysis and simulation tools.

The organization of the report is as follows. Section 2 describes the survey of exist-

ing tools and compare with our environment In section 3 we introduce BRSL, explains

how to specify parallel architectures with BRSL, and describe how and what to analyze

with the specification. Section 4 describes the distributed simulation which is to speed

up the simulation process. Network Event Manager to be used for monitoring and

analysis of simulation is described in section 5. We conclude the report by identifying

future work.

m m m , ...- . m ---- - -- - --- ------- " smnmm,, mamm mm..m....m

-4-

2. Survey o existing toos

In this section, we describe the survey of tools developed or proposed. Along with

the survey of existing tools, we put much efforts on identifying important metrics in

evaluation of parallel systems.

2.1. Tools

We briefly describe the survey on hardware description languages for detiled

specification of integrated circts and 6 simulation tools for performance analysis.

2.1. Hardware description languages

There have been many hardware description languages and analysis tools mainly for

the purpose of synthesis of integrated circuits. In the order of degree of abstraction level,

they can be categorized into circuit level, gate level, register transfer level, instruction

level, and finally system level. The VHSIC Hardware Description Language (VHDL) [1]

allows design and documentation of digital circuit from system level down to the gate

leveL VHDL system uses event-driven model to simulate MOS circuits. One example

of instruction level language is Instruction Set Processor (ISP)[2]. Computer Design

Language (CDL)[3], A Hardware Programming Language (AHPL)[4], and Digital Sys-

tems Design Language (DDL)[5] describe at the level of register transfer logic. AHPL

and DDL also describe hardware at circuit level

Although the above mentioned languages provide strong capability to describe

hardware environment, their level of description is too low to be used to specify and

analyze parallel architectures especially in conjunction with software description. There-

fore, we don't consider this category of systems.

2.1.2. Distributed Execution Analysis Suite (DEA-guite)[6]

The system is to be used as a design tool in the early phase of the development pro-

cess for performance analysis. Basically, it requires two inputs, high level description on

application based on dataflow model and high level description on underlying hardware

system such as connectivity of each node, etc. Task allocation and scheduling policies

on each node are automatically selected from the provided library. However, the system

proposed has several weaknesses as follows.

(1) Main focus on analysis is to find the cost related to communication delay in each

link.

(2) Task allomtion requires extensive interaction with designers even though they

claimed it is done automatically.

(3) They assumed that scheduling policy is chosen automatically. Since the cost of

communication delay depends on the communication protocol and scheduling pol-

icy on each node, it is questionable whether designrs are able to give the cost of

communication delay without knowing how DEA-suite select scheduling policy and

what kind of protocol is to be used in application.

2.1.3. EUCLID[7J

Recently, most research on parallel computing system are oriented at development

of computational models. Unlike recent trade, this system is to study operational

behavior and performance of parallel computer systems. Although this kind of system

can be used at the testing phase after design, it would be hard to be used in the initial

phase of design or evaluation because of the following.

(1) It requires detailed description on application and underlying systems. Therefore,

users have to put much efforts to use the system, especially in the case of many can-

didate underlying systems. Also, description on application might be dependent on

underlying systems.

(2) Description depends on assembly language level. Therefore, it is very difficult to

describe the system without knowing low level details of the system.

2.1.4. Massive Multiprocessor Simulator (MMS)[8]

It is to support the design of the system whose application is specific. First, the

design begins by considering application itself, and decomposes its requirement based on

the parallel flow graph (PFG) model which is similar to the AND-OR graph. Next, the

system uses PFG as an input to MMS for checking response time, communication delay

and so on. However, the system has inherent disadvantages as follows.

(1) PFG is a subset of queueing network models. Therefore, what MMS can do is done

by systems based on queueing network models.

-6-

(2) The tool is to support the development of custom-made hardware. Thcrefore, it can

hardly be used for evaluation of existing systems.

2.1. Simulator at Global Level (SiGLe)[91

SiGLe is a development tool which can simulate the execution of distributed algo-

rithm on a user-defined architecture. Three inputs to the SiGLe consists of the definition

of the machine architecture, the specification of the distributed algorithm, and implemen-

tation scheme of the algorithm on the architecture. The LAR (Language for ARchitec-

ture) specifies the MIMD architecture. The basic types of this language are processors,
memories, and buses. A complex type can be defined as a record structure of component

types and connections among them. The LAL (Language for ALgorithms) allows the

description of the creation of processes and the communication among them. The

sequential part of each process can be given in any language, at the convenience of the

user (e.g., C or Pascal). The LI (Language for Implementation) specifies the mapping

between processes and processors. And the simulation produces results such as the

actual results of the computation, the total execution time, the execution time of each

process, the utilization of each processor, the load on each bus, and the access conflicts to

the shared resources and the corresponding waiting time for processes.

2.1.6. Parallel Architecture Research and Evaluation Tool (PARET)[10]

The PARET is a tool which simulates the execution of a distributed algorithm on a

nonshared memory multiprocessor. Based upon the user provided specification of the

program, operating system, and architecture, the PARET performs the high-level

behavioral simulation, displays the result on the graphic workstation, and saves the sum-

mary statistics in a file. The input to the PARET system consists of the description of

three subsystems: the user software, the system functions, and the interconnection. These

subsystems share the same model - a directed flow graph where nodes represent units of

computation and are connected by arcs for both data and control flow. And objects like

elements (processors), tokens (units of data and control flow), buffers (storage of tokens),

and threads (objects used to connect the buffers of different subsystems) are additionally

required to define the subsystems and the interaction among them. In addition to the

run-time visual display of the execution, the PARET collects statistics such as average

-7-

execution time of each node, the average occupancy of each buffer, the average transit

time of a token, and the amount of time an element spends idle.

2.1.7. Architecture Description Language (ADL)[11]

ADL- in conjunction with it's support software system, the ADS (Architecture

Development System) - provides capabilities to describe and experiment with the

hardware, system software, and application software of distributed systems. The struc-

ture of hardware is described as a collection of objects like processor, memory, switch,

etc., and an interconnection among them. The structure of software is also specified as a

collection of objects like task, file, message, etc., and an interconnection among them.

Some system behaviors like scheduling, load balancing, communication protocol, fault

management, etc. can be specified and the tasks of the application software can be pro-

vided as either real software or a simulated model of the real software.

2.2. Metrics

We define two types of metrics for parallel system evaluation: application indepen-

dent metrics and application dependent metrics.

2.2.1. Application independent metrics

This category of metrics can be obtained by analyzing the structure of the system

and from information provided by manufacturers without considering applications. In

the following, we describe metrics belonging to this category.

(1) Granularity of parallelism: fine grain, coarse grain, or medium grain.

(2) Machine type: SIMD or MIMD.

(3) Reliability: mean time between failure and inherent redundancy (e.g., the number of

CPUs, the number of memory modules, the number of available data paths between

components, etc.)

(4) Cycle time and word size.

(5) Scalability: cost of adding more components.

(6) Communication scheme: dynamic or static.

-8-

(7) Intended application area (e.g., Cray 2 for scientific problems)

These metrics provide basic ideas on the power of the system. Based on these metrics,

we examined four systems: Connection machine (CM-1), Cray 2, Parallel Inference

Machine being developed in Japan (PIM-D), and Butterfly multiprocessor system. The

result is shown in Table 1.

Metric CM-1 Cray 2 PIM-D Butterfly
Granularity fine coarse- coarse- coarse
of grain medium medium grain
parlelism g grain
Machine SIMD MIMD SIMD/MIMD MIMD
type (basic level)
Cooling Air-cooled Liquid Unknown None
System Immersion
Operations/ns 10.8 15.8 1 logical

inference
(1G LIPS
is assumed)

Bottleneck Memory/ Processor/ Communication Memory
communication memory

Scalability High Low Very high Extremely
high

Communication dynamic roughly fixed fixed
scheme fixed
Application area modeling the Scientific Knowledge Unknown

problems in problems information
real worlds. I__ I processing

Table 1. Comparison by application independent metrics

2.= Application dependent metics

This category of metrics can be obtained by simulation. In the following, we

describe metrics belonging to this category.

(1) Performnance metrics: response time, communication delay, size of message on data

path, processor utilization, average queue length, or delay caused by accessing

shared resources.

(2) Reliability metrics: performance degradation when a component fails.

-9-

(3) Scalability metrics: performance improvement by adding more components.

Based on these metrics, we compare the tools being surveyed and our proposed approach

as shown in Table 2.

tool performance reliabl scalabili!Xy spcfcto
DEA-suite - communication none -abstract

cost __ _ _ _data type
EUCID - response time variable instruction

none number of set for SW
- processor & 'processor & network

memory memory model for HW
utilization modules ______

MMS - response
time none none parallel

- comnmunication flow graph
_____ _____ delay _ _ _ _ _ _ _

SiGLe - response abstract data
time type + real

- processor none -code for SW
utilization abstract data

- shared resource type for HW
_________ access pattern ______

PARET - response time
- processor directed

utilization none -graph

- queue length
- communication

deay__ _ _ _ _ _ _ _ _ _ _ _ _

ADL not available specification entity-
possible -relation-

attribute
model +

____ ___ __ _ ___ ____ __ ____ ___ ___ real code

Our described sensitivity sensitivity entity-
approach in the text analysis analysis relation-

attribute
model

____ ___ ____ ___ ___ ___ ___ __ _ ___ ___(BRSL)

Table 2. Commparison by application dependent metrics

- 10-

& Berkdey RSL

BRSL language is based on entity-attribute-relation modeL The components of a

parallel machine hardware (e.g. processor, node, communication link) and software (e.g.

execution block, interface, process) are represented as enies or in E-R-A model as

shown in Figure 2.

Process-zelation-attribute Model

Node-processor-comm. link: physical stucture
Node-processor-process : task allocation

uses : one to one

memory : one to many

processor node L com. lihnk

bl d s o sst c "nte asse

1(envir.) onzi-

Figure 2: E-R-A Model

The entities have aribwues. For example the processor can be attributes like Computa-

tion power (in MIPS) to describes properties of the component. Some of the attributes

are basic and provided by the design. Other attributes are derived and should computed

during the evaluation procedure and simulation. The properties related to more than one

component-type are represented by reliwonships. For example nodes are connected via

communicion links.

The language is described by Backus Naur Form grammar rules as shown in the

illustrative subset of rules listed in the following.

3.1. BNF grammar for BRSL
SYSTEM: <entity-deflnition>.
I <entity-d., iton> <entity-definitions>.

<entity..dflnition> :<node..entity definition>
I <process..entity-.definition>
I <block-etiy..deflniton>
I -diterface...entity-definition>
I4dink.entity..definition>
I <message...entity-deflnition>
I <data-.entity...deflnition>

I <entity-.definition> <entity..deflnitions>

% task allocation specification

<node-.entity..deflnition> :
NODE <node-name> CONTAINS PROCESS <process-names>.
I NODE <node-name> IS CONNECTED TO LINK <link-names>.

% process related timing information specification

qprocss..entity-.deflnition>: <process-relations> <proces&..atributes>.
<piocessjelations>: <process-relation>.

I <process-relation> <processjelations>.
<process-relaion>:

PROCESS <process-name> CONSISTS OF BLOCK <block-.names>.
I PROCESS <process-.name> CONSISTS OF PROCESS <process-names>.
I PROCESS <process-name> USES DATA <data-names>.
I PROCESS <process..name> INPUTS FROM INTERFACE <cinterface-name>.
I PROCESS <process-name> OUTPUTS TO INTERFACE <interface-name>.
I PROCESS <process_name> IS CONTAINED IN NODE <nodejiame>.
I PROCESS <process..name> STRUCTURE <block_entity~ieflnition> END.

<pocss..attibutes>: <prcess..attribute>.
I <process..attwibute> <process-.attributes>.

<process..awtibute>: DEADLINE <number>.
I MAXIMUM-.0MCUTION-IME <numnber>.
I MINIMUM-ARRIVAL-jNTERVAL <number>..

% message related timing information specifications

cmessage...entity..Aefinition>: cmessagejrelations> <niessage-..attibutes>.
4:messatge...rlations> 4messagejelation>.

I <messagerelation> <xnessagejelations>.
<mnessagejelaion>: MESSAGE <message-iame> CONTAINS DATA <data-name>.

I MESSAGE <message-name> IS PASSED THROUGH INTERFACE <interface-name>.
I MESSAGE <znessagejiame> IS DELIVERED BY LINK <link name>.

<messa..aributes>: <message-,atnribute>.

-12-

I <messagcattibute> <messageatibutes>.
<mcssage-atuibute>: AMOUNT-DATA <number>.

I MINIMALARRIVALITrIVAL <number>.
I VAUDITY <number>.

4. Distributed Simulation

Simulation of a parallel architecture along with a benchmark program would be a

very time consuming job because we have too many components to simulate such as

hundreds or thousands of ,=oess,-,s, m.-,y mtaiory modules, and nrany switching com-

ponents and also both the behavior of each component and structural relationships among

them are very complex. To cope with this performance problem of the simulator itself,

many researchers have worked on the distributed simulation in which the simulator itself

is running on a distributed environment.

There are two major approaches to distributed simulation: synchronous method and

asynchronous method. In the synchronous method, the computation consists of a

sequence of phases, where in each phase all the processes simulate the behavior of a

component of the target system for time A and then synchronize. The primary issue in

this approach is the selection of the parameter At which affects the numerical accuracy

of the results. Another issue, which is application-dependent, is finding parallelism for

the simulation.

In the asynchronous method, the target system is modeled as a set of asynchronous

computations running concurrently on multiple processors. The simulation time

advances asynchronously for each process. One problem which arises in structuring the

simulation as a set of asynchronous communicating computations is that each process has

to determine without access to global state when it is safe for it to advance its local simu-

lation time without causing deadlock. This problem is called time-advancemena problem.

And work in the area of distributed simulation has primarily concentrated on distributed

time-advancement. The following are some of the properties that are desirable in a dis-

tributed control (special case of which is time advancement) algorithms:

(1) Global knowledge: use global knowledge to make decisions if it allows more

optimality in reaching towards a good solution.

(2) Scalability to large problems: If there is any locality in the problem, the algorithm

should exploit it.

-13-

(3) Collection of knowledge: The scheme for collection of knowledge should be

efficient with low latency and overhead. In particular, it is desirable that it does not

require flushing of channels or make unrealistic demands on resources, such as

unlimited buffering capacity.

(4) Adaptive: The overhead in resolution of deadlocks, etc. should be in proportion to

their frequency.

(5) Avoid rollbacks: Rollbacks can be expensive during run-time. Furthermore, the

schemes using rollbacks can be difficult to implement. Therefore, one must avoid

rollbacks, and if advantages are there in using a scheme with rollback, reduce their

frequency to optimize performance.

(6) Dynamic topologies: The solutions must be able to deal with situations where

processes or communication channels can get created or terminated dynamically.

(7) Finite memory; The algorithms should work if the processors have only limited

memory.

The Null-message scheme[12] uses only very localized information and thus

advances time very slowly, and can even fail to work in some cases. The algorithm pro-

posed by Bryant[13] uses global information to detect and resolve deadlocks but requires

flushing of channels during status collection and thus may fail if sufficient memory is not

available for flushed messages. The time-warp method[14] does not use any global

information and relies on rollback and is thus expensive to implement in general. The

circulating token algorithm[15] takes advantages of locality in deadlock resolution; how-

ever there is no mechanism for dealing with dynamic topologies and changing the token
assignment dynamically based on the system state. Another algorithm by Chandy and

Misra[16] uses full global state for time advancement; however, it requires that all

pocesses be deadlocked before resolution is carried out and thus cannot take advantage

of locality. Finally the algorithm in (17] is based on the hierarchical algorithm and

attempts to meet all the above criteria.

The main idea in the hierarchical algorithm is to divide the process network into

clusters, according to the locality of frequency of deadlocks. Clusters appear as single

processes at higher levels of the hierarchy. Time advancement is carried out locally

within each cluster if possible. If time advancement is not possible locally, then an

attempt is made to advance time at higher levels of the hierarchy. It is guaranteed that at

- 14-

least one message will be sent or received between the initiation of the algorithm and its

termination. This algorithm has the following features:

(1) The algorithm is hierarchical. Therefore time increment in local deadlocks is car-

ied out rapidly before the deadlock spreads to other processes. Also, because of the

hierarchical nature of the lgorithm, ommunication and processing overhead in

time advancement is localized.

(2) The algorithm places emphasis on time advancement rather than deadlock detec-

tion.

(3) Many time advancements may be going on at the same time in different clusters of

the hierarchy.

(4) The algorithm can be used in parallel with other time advancement schemes.

(5) The algorithm is conservative, i.e., no rollbacks occur during its execution. How-

ever, it uses any look-ahead information that the programmer provides in the simu-

lation program to speed up time advancement.

S. Network Event Manager

It is very important to be able to track events that occur in a distributed computing

environment, to take actions for analyzing the events, and to improve the behavior of the

system. During a distributed simulation, we are often interested in determining the glo-

bal state of the system with respect to simulation time. For example, it may be desirable

to display snapshots of system state graphically at a rate proportional to simulation time.

Some of the examples are as follow:

(1) When the simulation clock of all the processes exceeds a certain maximum, report

to the user.

(2) Report the mean and variance of queue length of all the channels to the user after

every 5 units of simulation time.

(3) When the number of events executed by all the processes exceeds a certain max-

imum, initiate a simulation termination algorithm.

In the domain of distributed computing, specifically distributed simulation, the fol-

lowing services are necessary.

- 15-

(1) Co//ectIstoredasa: Monitor the system continuously and collect data required for

detection, analysis, and action as explained next.

(2) Detect event/state: Detect undesirable or interesting events/states. We need a

language to specify those events/sates and efficient algorithm to detect them.

(3) Analysis: Find the most possible cause for the detected event/state by analyzing the

stored data. For this we need inferencing capability with the management of uncer-

tainty. If more data are required for the analysis in addition to normally collected

dam, we should conduct experiments on remote machines to acquire those required

dam.

(4) PlaneIecute action: Plan and execute actions to control the functioning of distri-

buted objects to take the system to a more desirable global state.

clients

J request reply

request table
Network

Event detection action
Manager data collection/storage

Z[data control

distributed

system

Figure 3 Block diagram of the Network Event Manager

For the network environment, in [18] Shim described a system called the

Networ Event Manager (NEM) which provides the above services. The basic structure

of the NEM is hown in Figure 3. It accept request of the form

event/state -+ (hypothesis -+ action).

Upon receiving this request the NEM detects the event/state, analyzes data to prove that

•- " " " ." '.- ,,:, ,/.. + .X v r.,- pj . .. ,% ? - . ,B . .• . , '" + '", :

- 16-

the given hypothesis is the cause for the event/state, and plans/executes the action if the

hypothesis is proven to be the cause. If there can be several different causes for an

event/state, then the request is given as follow:

event/state -+ (hypothesis- I -+ action- 1)

or (hypothesis-2 -+ action-2)

or (hypothesis-n -+ action-n)

After detecting the given event/state, the NEM analyzes data to decide which is the most

possible cause among the n hypotheses, and then plan/execute the corresonding action.

Or the basic form of the request can be simplified as following two forms:

event/state -+ (-+ action)

-+ (-+ action)

In the first case the action is planned/executed as soon as the event/state is detected and

in the second case the action is planned/executed without any detection or analysis.

Client applications

Request management layer

Status maintenance layer

Clock synchronization layer

Communication subsystem

UNIX TCP/IP layer

Figure 4 Layers of the Network Event Manager

The NEM is designed in a layered manner as shown in Figure 5. The communica-

tion layer provides facilities for interprocess communication across a network. The clock

synchronization layer provides a method of determining ordering and duration of

events/states in the system.

- 17-

The status maintenance layer collects data from the distributed system and stores

them in the database. We view the distributed system as a collection of various kinds of

objects such as host, process, message, file, etc as in Figure 4. An object is characterized

by two lists: attibutes and operations. Attributes represent states of an object and can be

either constant or time-varying. An object operation is a function which can be operated

on that object. For example, a process object can have constant attributes such as

process-identoer, and command, a time-varying attribute such as process -status, and

operations such as create, destroy, start, stop. Relationships exist among objects.

Part-of relationship exists from a process to a host, connect relationship exists among

hosts, etc. With this conceptual view of the distributed system, the collected data con-

sists of object attribute values, occurrence of object operations. and

relationships among objects. Some of these data are collected by either

sampling probes or tracing probes. A sampling probe is periodically _r aperiodically

invoked and collects values for time-varying attributes. A tracing probe probe is invoked

when an object operation occurs and collects data regarding that object operation.

Figure 5 Conceptual view of a distributed system

,.ra~ram • m • w • tm m m

-18-

Request management layer consists of 3 modules to detect events/states, analyze

data, and plan/execute actions. The module to detect events/states, in real-time, detects

events/states specified in a classical temporal logic-based language. The modules to

analyze data and plan/execute actions consists of a prolog process which can communi-

cate with remote processes and use data in the database. These two modules have the

capabilities to reason with uncertainty management and experiment on remote machines

and execute planned actions.

6. Conclusion

We conclude this report by itemizing our future works in the following.

(1) Classification of parallel machines : More research will be done to specify and clas-

sify various parallel machines.

(2) Evaluation of specification language : Feasibility, descriptive power, and capability

to represent various parallel architectures will be studied.

(3) Identification of metrics : We need to define important metrics such as performance

measure, scalability, reliability, fault-tolerance, concurrency, granulity, etc.

(4) Benchmark program development and testing : Prototype evaluation will be

analyzed by benchmark programs for various softwares and hardwares.

(5) Sensitivity analysis : The performance variation due to the changes in resources

should be studied.

Our BRSL will have complete system integration. High level hardware-software

simulator, analysis tool and tester will be integrated into the BRSL system. We will

extend and implement our prototype design of static analyzer and high level benchmark

system (simulator) to be integrated altogether. Final version of the integrated BRSL sys-

tem tool will be tested and demonstrated.

References

1. Moe Shahdad, "An Overview of VHDL Language and Technology," 23rd Design

Automaton Conference, pp. 320-326, 1986.

2. M.R. Barbacci, The ISPS Computer Description Language, Dept. of ECE,

Carnegie-Mellon University, August 1977.

- 19-

3. J. Bar& and R. Born, "A CDL Compiier for Designing and Simulating Digital Sys-

tems at the Register Transfer Level," Proc. Int. Cof. CHD's Applications, pp. 96-

102, 1975.

4. FJ. Hill and G.R. Peterson, Digital Systems: Hardware Organization and Design,

New York, Wiley, 1978.

5. S.G. Shiva, "On the Selection and Development of an HDL," Proceedings of the

Seventeenth Annual Hawaii International Conference on System Sciences, pp. 120-

128, 1984.

6. Paul R. Ponville, Lois M. L Delcambre, and Steve P. Landry, "Describing Distri-

buted Environments," IEEE International Conference on Distributed Computing

Systems, pp. 296-302, 1986.

7. James M.Butler and A. Yavuz Oruc, "EUCLID: An Architectural Multiprocessor

Simulator," IEEE International Conference on Distributed Computing Systems, pp.
280-287, 1986.

8. Tadashi Ae, Reiji Aibara, Minoru Etoh, and Hiroshi Matsumoto, "A Massive Mul-

tiprocessor Simulator for Performance Evaluation," International Conference on

Supercomputing, pp. 73-82, 1985.

9. F. Andre and A. Joubert, "SiGLe: An Evaluation Tool for Distributed System,"

IEEE International Conference of Software Engineering, pp. 466-472, 1987.

10. Kathleen M. Nichols and John T. Edmark, "Modeling Multicomputer Systems with
PARET," IEEE Computer, pp. 39-48, May 1988.

11. John T. Ellis, James W. Hooper, and Tony A. Johnson, and W. Daniel Hillis,. "An

Architecture Description Language (ADL) for Describing and Prototyping Distri-

buted Systems," Proc. of the Seventeenth Annual Hawaii International Conference

on System sciences, pp. 105-119, 1984.

12. K.M. Chandy and J. Misra, "A Nontrivial Example of Concurrent Pmcessing: Dis-

tributed Simulation," COMPSAC, 1978.

13. R.E. Bryant, "Simulation on a Distributed System," COMPSAC, 1979.

14. D.R Jefferson and H. Sowizral, "Fast Concurrent Simulation Using the Tiem Warp

Mechanism," Proceedings of the Conference on Distributed Simulation, vol. 15,

no. 2, pp. 63-69, Jan. 1985.

-20-

15. J. Misra, "Distributed Discrete-Event Simulation," Computing Surveys, vol. 18, no.

1, pp. 39-65, March 1986.

16. K.M. Chandy and J. Misra, "Asynchronous Distributed Simulation via a Sequence

of Parallel Computations," CACM, vol. 24, no. 11, pp. 198-206, April 1981.

17. A. Prakash, "Modeling, Simulation, and Analysis of Systems with a Large Number

of Interacting Entities," PhD. Thesis, Computer Science Division, Dept. of EECS,

University of California, Berkeley, CA 94720, Dec. 1988.

18. Y.-C. Shim, "Knowledge-Based Integrated Mechanism for the Management of Dis-

tributed Systems," Qualifying Proposal, Computer Science Division, University of

California, Berkeley, CA 94720,1990.

